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Welcome to CVXPY

Join the CVXPY mailing list [https://groups.google.com/forum/#!forum/cvxpy] for the best CVXPY support!

CVXPY 1.0 is under development. There will be some changes to the user interface [https://github.com/cvxgrp/cvxpy/issues/199].

CVXPY is a Python-embedded modeling language for convex optimization problems. It allows you to express your problem in a natural way that follows the math, rather than in the restrictive standard form required by solvers.

For example, the following code solves a least-squares problem where the variable is constrained by lower and upper bounds:

from cvxpy import *
import numpy

# Problem data.
m = 30
n = 20
numpy.random.seed(1)
A = numpy.random.randn(m, n)
b = numpy.random.randn(m)

# Construct the problem.
x = Variable(n)
objective = Minimize(sum_squares(A*x - b))
constraints = [0 <= x, x <= 1]
prob = Problem(objective, constraints)

# The optimal objective is returned by prob.solve().
result = prob.solve()
# The optimal value for x is stored in x.value.
print x.value
# The optimal Lagrange multiplier for a constraint
# is stored in constraint.dual_value.
print constraints[0].dual_value





This short script is a basic example of what CVXPY can do. CVXPY also supports simple ways to solve problems in parallel, higher-level abstractions such as object oriented convex optimization, and extensions for non-convex optimization.

CVXPY was designed and implemented by Steven Diamond, with input from Stephen Boyd and Eric Chu.

CVXPY was inspired by the MATLAB package CVX [http://cvxr.com/cvx/]. See the book Convex Optimization [http://www.stanford.edu/~boyd/cvxbook/] by Boyd and Vandenberghe for general background on convex optimization.

CVXPY relies on the open source solvers ECOS [http://github.com/ifa-ethz/ecos], CVXOPT [http://cvxopt.org/], and SCS [http://github.com/cvxgrp/scs].
Additional solvers are supported, but must be installed separately.
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Install Guide


Mac OS X

The following instructions assume you already have Python installed.
CVXPY supports both Python 2 and Python 3.


	Install the Command Line Tools for Xcode.

Download from the Apple developer site [http://developer.apple.com/downloads].



	If you don’t have pip installed, follow the instructions here [https://pip.pypa.io/en/latest/installing.html] to install it.



	Install numpy with pip from the command-line.

pip install numpy







	Install cvxpy with pip from the command-line.

pip install cvxpy







	Test the installation with nose.






pip install nose
nosetests cvxpy











Ubuntu 14.04

The following instructions are for installing CVXPY with Python 2.
To install CVXPY with Python 3, simply install the Python 3 version of all the packages.


	Make sure apt-get is up-to-date.




sudo apt-get update









	Install ATLAS and gfortran (needed for SCS).

sudo apt-get install libatlas-base-dev gfortran







	Install python-dev.

sudo apt-get install python-dev







	Install pip.

sudo apt-get install python-pip







	Install numpy and scipy.

sudo apt-get install python-numpy python-scipy







	Install cvxpy.

sudo pip install cvxpy










or to install locally


pip install --user cvxpy












	Install nose.




sudo apt-get install python-nose









	Test the installation with nose.




nosetests cvxpy











Windows

Here is a step-by-step guide to installing CVXPY on a Windows machine.


	If you have Python installed already, it’s probably a good idea to remove it first. (Sorry!)

	Download the latest version of Python(x,y).

	Install Python(x,y). When prompted to select optional components, make sure to check cvxopt and cvxpy, as shown below.




[image: ../_images/windows1.png]
[image: ../_images/windows2.png]



4. To test the cvxpy installation,
open Python(x,y) and launch the interactive console (highlighted button in the picture).
This will bring up a console.


[image: ../_images/windows4.png]



5. From the console, run “nosetests cvxpy”.
If all the tests pass, your installation was successful.




Other Platforms

The CVXPY installation process on other platforms is less automated and less well tested. Check this page [https://github.com/cvxgrp/cvxpy/wiki/CVXPY-installation-instructions-for-non-standard-platforms] for instructions for your platform.




Install from source

CVXPY has the following dependencies:


	Python 2.7 or Python 3.4

	setuptools [https://pypi.python.org/pypi/setuptools] >= 1.4

	toolz [http://github.com/pytoolz/toolz/]

	CVXOPT [http://cvxopt.org/] >= 1.1.6

	ECOS [http://github.com/ifa-ethz/ecos] >= 1.0.3

	SCS [http://github.com/cvxgrp/scs] >= 1.0.1

	NumPy [http://www.numpy.org/] >= 1.8

	SciPy [http://www.scipy.org/] >= 0.13



To test the CVXPY installation, you additionally need Nose [http://nose.readthedocs.org].

CVXPY automatically installs ECOS [http://github.com/ifa-ethz/ecos], CVXOPT [http://cvxopt.org/], SCS [http://github.com/cvxgrp/scs], and toolz [http://github.com/pytoolz/toolz/].
NumPy [http://www.numpy.org/] and SciPy [http://www.scipy.org/] will need to be installed manually. Once you’ve
installed NumPy [http://www.numpy.org/] and SciPy [http://www.scipy.org/], installing CVXPY from source is simple:


	Clone the CVXPY git repository [https://github.com/cvxgrp/cvxpy].



	Navigate to the top-level of the cloned directory and run

python setup.py install












Install with GLPK support

CVXPY supports the GLPK solver, but only if CVXOPT is installed with GLPK bindings. To install CVXPY and its dependencies with GLPK support, follow these instructions:


	Install GLPK [https://www.gnu.org/software/glpk/]. We recommend either installing the latest GLPK from source or using a package manager such as apt-get on Ubuntu and homebrew on OS X.



	Install CVXOPT [http://cvxopt.org/] with GLPK bindings.


CVXOPT_BUILD_GLPK=1
CVXOPT_GLPK_LIB_DIR=/path/to/glpk-X.X/lib
CVXOPT_GLPK_INC_DIR=/path/to/glpk-X.X/include
pip install cvxopt










	Follow the standard installation procedure to install CVXPY and its remaining dependencies.








Install with GUROBI support

CVXPY supports the GUROBI solver.
Simply install GUROBI such that you can import gurobipy in Python.
See the GUROBI [http://www.gurobi.com/] website for installation instructions.




Install with Elemental support

CVXPY supports the Elemental solver.
Simply install Elemental such that you can import El in Python.
See the Elemental [http://libelemental.org/] website for installation instructions.
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What is CVXPY?

CVXPY is a Python-embedded modeling language for convex optimization
problems. It
automatically transforms the problem into standard form, calls a solver,
and unpacks the results.

The code below solves a simple optimization problem in CVXPY:

from cvxpy import *

# Create two scalar optimization variables.
x = Variable()
y = Variable()

# Create two constraints.
constraints = [x + y == 1,
               x - y >= 1]

# Form objective.
obj = Minimize(square(x - y))

# Form and solve problem.
prob = Problem(obj, constraints)
prob.solve()  # Returns the optimal value.
print "status:", prob.status
print "optimal value", prob.value
print "optimal var", x.value, y.value





status: optimal
optimal value 0.999999989323
optimal var 0.999999998248 1.75244914951e-09





The status, which was assigned a value “optimal” by the solve method,
tells us the problem was solved successfully. The optimal value
(basically 1 here) is the minimum value of the objective over all
choices of variables that satisfy the constraints. The last thing
printed gives values of x and y (basically 1 and 0 respectively) that
achieve the optimal objective.

prob.solve() returns the optimal value and updates prob.status,
prob.value, and the value field of all the variables in the
problem.


Namespace

The Python examples in this tutorial import CVXPY using the syntax from cvxpy import *.
This is done to make the examples simpler and more concise. But for production
code you should always import CVXPY as a namespace. For example,
import cvxpy as cvx. Here’s the code from the previous section with
CVXPY imported as a namespace.

import cvxpy as cvx

# Create two scalar optimization variables.
x = cvx.Variable()
y = cvx.Variable()

# Create two constraints.
constraints = [x + y == 1,
               x - y >= 1]

# Form objective.
obj = cvx.Minimize(cvx.square(x - y))

# Form and solve problem.
prob = cvx.Problem(obj, constraints)
prob.solve()  # Returns the optimal value.
print "status:", prob.status
print "optimal value", prob.value
print "optimal var", x.value, y.value





Nonetheless we have designed CVXPY so that using from cvxpy import *
is generally safe for short scripts. The biggest catch is that the built-in
max and min cannot be used on CVXPY expressions. Instead use the
CVXPY functions max_elemwise, max_entries, min_elemwise, or min_entries.

The built-in sum can be used on lists of CVXPY expressions to add all the list elements together. Use the CVXPY function sum_entries to sum the entries of a single CVXPY matrix or vector expression.




Changing the problem

After you create a problem object, you can still modify the objective
and constraints.

# Replace the objective.
prob.objective = Maximize(x + y)
print "optimal value", prob.solve()

# Replace the constraint (x + y == 1).
prob.constraints[0] = (x + y <= 3)
print "optimal value", prob.solve()





optimal value 1.0
optimal value 3.00000000006








Infeasible and unbounded problems

If a problem is infeasible or unbounded, the status field will be set to
“infeasible” or “unbounded”, respectively. The value fields of the
problem variables are not updated.

from cvxpy import *

x = Variable()

# An infeasible problem.
prob = Problem(Minimize(x), [x >= 1, x <= 0])
prob.solve()
print "status:", prob.status
print "optimal value", prob.value

# An unbounded problem.
prob = Problem(Minimize(x))
prob.solve()
print "status:", prob.status
print "optimal value", prob.value





status: infeasible
optimal value inf
status: unbounded
optimal value -inf





Notice that for a minimization problem the optimal value is inf if
infeasible and -inf if unbounded. For maximization problems the
opposite is true.




Other problem statuses

If the solver called by CVXPY solves the problem but to a lower accuracy than desired, the
problem status indicates the lower accuracy achieved. The
statuses indicating lower accuracy are


	“optimal_inaccurate”

	“unbounded_inaccurate”

	“infeasible_inaccurate”



The problem variables are updated as usual for the type of solution
found (i.e., optimal, unbounded, or infeasible).

If the solver completely fails to solve the problem, CVXPY throws a SolverError exception.
If this happens you should try using other solvers. See
the discussion of Choosing a solver for details.

CVXPY provides the following constants as aliases for the different status strings:


	OPTIMAL

	INFEASIBLE

	UNBOUNDED

	OPTIMAL_INACCURATE

	INFEASIBLE_INACCURATE

	UNBOUNDED_INACCURATE



For example, to test if a problem was solved successfully, you would use

prob.status == OPTIMAL








Vectors and matrices

Variables can be scalars, vectors, or matrices.

# A scalar variable.
a = Variable()

# Column vector variable of length 5.
x = Variable(5)

# Matrix variable with 4 rows and 7 columns.
A = Variable(4, 7)





You can use your numeric library of choice to construct matrix and
vector constants. For instance, if x is a CVXPY Variable in the
expression A*x + b, A and b could be Numpy ndarrays, SciPy
sparse matrices, etc. A and b could even be different types.

Currently the following types may be used as constants:


	Numpy ndarrays

	Numpy matrices

	SciPy sparse matrices



Here’s an example of a CVXPY problem with vectors and matrices:

# Solves a bounded least-squares problem.

from cvxpy import *
import numpy

# Problem data.
m = 10
n = 5
numpy.random.seed(1)
A = numpy.random.randn(m, n)
b = numpy.random.randn(m, 1)

# Construct the problem.
x = Variable(n)
objective = Minimize(sum_entries(square(A*x - b)))
constraints = [0 <= x, x <= 1]
prob = Problem(objective, constraints)

print "Optimal value", prob.solve()
print "Optimal var"
print x.value # A numpy matrix.





Optimal value 4.14133859146
Optimal var
[[ -2.76479783e-10]
 [  3.59742090e-10]
 [  1.34633378e-01]
 [  1.24978611e-01]
 [ -3.67846924e-11]]








Constraints

As shown in the example code, you can use ==, <=, and >= to construct constraints in CVXPY. Equality and inequality constraints are elementwise, whether they involve scalars, vectors, or matrices. For example, together the constraints 0 <= x and x <= 1 mean that every entry of x is between 0 and 1.

If you want matrix inequalities that represent semi-definite cone constraints, see Semidefinite matrices. The section explains how to express a semi-definite cone inequality.

You cannot construct inequalities with < and >. Strict inequalities don’t make sense in a real world setting. Also, you cannot chain constraints together, e.g., 0 <= x <= 1 or x == y == 2. The Python interpreter treats chained constraints in such a way that CVXPY cannot capture them. CVXPY will raise an exception if you write a chained constraint.




Parameters

Parameters are symbolic representations of constants. The purpose of parameters is to change
the value of a constant in a problem without reconstructing the entire
problem.

Parameters can be vectors or matrices, just like variables. When you
create a parameter you have the option of specifying the sign of the
parameter’s entries (positive, negative, or unknown). The sign is
unknown by default. The sign is used in Disciplined Convex Programming. Parameters can be
assigned a constant value any time after they are created. The constant
value must have the same dimensions and sign as those specified when the
parameter was created.

# Positive scalar parameter.
m = Parameter(sign="positive")

# Column vector parameter with unknown sign (by default).
c = Parameter(5)

# Matrix parameter with negative entries.
G = Parameter(4, 7, sign="negative")

# Assigns a constant value to G.
G.value = -numpy.ones((4, 7))





You can initialize a parameter with a value. The following code segments are equivalent:

# Create parameter, then assign value.
rho = Parameter(sign="positive")
rho.value = 2

# Initialize parameter with a value.
rho = Parameter(sign="positive", value=2)





Computing trade-off curves is a common use of parameters. The example below
computes a trade-off curve for a LASSO problem.

from cvxpy import *
import numpy
import matplotlib.pyplot as plt

# Problem data.
n = 15
m = 10
numpy.random.seed(1)
A = numpy.random.randn(n, m)
b = numpy.random.randn(n, 1)
# gamma must be positive due to DCP rules.
gamma = Parameter(sign="positive")

# Construct the problem.
x = Variable(m)
error = sum_squares(A*x - b)
obj = Minimize(error + gamma*norm(x, 1))
prob = Problem(obj)

# Construct a trade-off curve of ||Ax-b||^2 vs. ||x||_1
sq_penalty = []
l1_penalty = []
x_values = []
gamma_vals = numpy.logspace(-4, 6)
for val in gamma_vals:
    gamma.value = val
    prob.solve()
    # Use expr.value to get the numerical value of
    # an expression in the problem.
    sq_penalty.append(error.value)
    l1_penalty.append(norm(x, 1).value)
    x_values.append(x.value)

plt.rc('text', usetex=True)
plt.rc('font', family='serif')
plt.figure(figsize=(6,10))

# Plot trade-off curve.
plt.subplot(211)
plt.plot(l1_penalty, sq_penalty)
plt.xlabel(r'\|x\|_1', fontsize=16)
plt.ylabel(r'\|Ax-b\|^2', fontsize=16)
plt.title('Trade-Off Curve for LASSO', fontsize=16)

# Plot entries of x vs. gamma.
plt.subplot(212)
for i in range(m):
    plt.plot(gamma_vals, [xi[i,0] for xi in x_values])
plt.xlabel(r'\gamma', fontsize=16)
plt.ylabel(r'x_{i}', fontsize=16)
plt.xscale('log')
plt.title(r'\text{Entries of x vs. }\gamma', fontsize=16)

plt.tight_layout()
plt.show()





[image: ../../_images/tutorial_20_0.png]
Trade-off curves can easily be computed in parallel. The code below
computes in parallel the optimal x for each \(\gamma\) in the LASSO
problem above.

from multiprocessing import Pool

# Assign a value to gamma and find the optimal x.
def get_x(gamma_value):
    gamma.value = gamma_value
    result = prob.solve()
    return x.value

# Parallel computation (set to 1 process here).
pool = Pool(processes = 1)
x_values = pool.map(get_x, gamma_vals)
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Disciplined Convex Programming

Disciplined convex programming (DCP) is a system for constructing mathematical expressions with known curvature from a given library of base functions. CVXPY uses DCP to ensure that the specified optimization problems are convex.

This section of the tutorial explains the rules of DCP and how they are applied by CVXPY.

Visit dcp.stanford.edu [http://dcp.stanford.edu] for a
more interactive introduction to DCP.


Expressions

Expressions in CVXPY are formed from variables, parameters, numerical
constants such as Python floats and Numpy matrices, the standard
arithmetic operators +, -, *, /, and a library of
functions. Here are some examples of CVXPY expressions:

from cvxpy import *

# Create variables and parameters.
x, y = Variable(), Variable()
a, b = Parameter(), Parameter()

# Examples of CVXPY expressions.
3.69 + b/3
x - 4*a
sqrt(x) - min_elemwise(y, x - a)
max_elemwise(2.66 - sqrt(y), square(x + 2*y))





Expressions can be scalars, vectors, or matrices. The dimensions of an expression are stored as expr.size. CVXPY will raise an exception if an
expression is used in a way that doesn’t make sense given its
dimensions, for example adding matrices of different size.

import numpy

X = Variable(5, 4)
A = numpy.ones((3, 5))

# Use expr.size to get the dimensions.
print "dimensions of X:", X.size
print "dimensions of sum_entries(X):", sum_entries(X).size
print "dimensions of A*X:", (A*X).size

# ValueError raised for invalid dimensions.
try:
    A + X
except ValueError, e:
    print e





dimensions of X: (5, 4)
dimensions of sum_entries(X): (1, 1)
dimensions of A*X: (3, 4)
Incompatible dimensions (3, 5) (5, 4)





CVXPY uses DCP analysis to determine the sign and curvature of each expression.




Sign

Each (sub)expression is flagged as positive (non-negative), negative
(non-positive), zero, or unknown.

The signs of larger expressions are determined from the signs of their
subexpressions. For example, the sign of the expression expr1*expr2 is


	Zero if either expression has sign zero.

	Positive if expr1 and expr2 have the same (known) sign.

	Negative if expr1 and expr2 have opposite (known) signs.

	Unknown if either expression has unknown sign.



The sign given to an expression is always correct. But DCP sign analysis
may flag an expression as unknown sign when the sign could be figured
out through more complex analysis. For instance, x*x is positive but
has unknown sign by the rules above.

CVXPY determines the sign of constants by looking at their value. For scalar constants, this is straightforward. Vector and matrix constants with all positive (negative) entries are marked as positive (negative). Vector and matrix constants with both positive and negative entries are marked as unknown sign.

The sign of an expression is stored as expr.sign:

x = Variable()
a = Parameter(sign="negative")
c = numpy.array([1, -1])

print "sign of x:", x.sign
print "sign of a:", a.sign
print "sign of square(x):", square(x).sign
print "sign of c*a:", (c*a).sign





sign of x: UNKNOWN
sign of a: NEGATIVE
sign of square(x): POSITIVE
sign of c*a: UNKNOWN








Curvature

Each (sub)expression is flagged as one of the following curvatures (with respect to its variables)







	Curvature
	Meaning




	constant
	\(f(x)\) independent of \(x\)


	affine
	\(f(\theta x + (1-\theta)y) = \theta f(x) + (1-\theta)f(y), \; \forall x, \; y,\; \theta \in [0,1]\)


	convex
	\(f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y), \; \forall x, \; y,\; \theta \in [0,1]\)


	concave
	\(f(\theta x + (1-\theta)y) \geq \theta f(x) + (1-\theta)f(y), \; \forall x, \; y,\; \theta \in [0,1]\)


	unknown
	DCP analysis cannot determine the curvature





using the curvature rules given below. As with sign analysis, the
conclusion is always correct, but the simple analysis can flag
expressions as unknown even when they are convex or concave. Note that
any constant expression is also affine, and any affine expression is
convex and concave.




Curvature rules

DCP analysis is based on applying a general composition theorem from
convex analysis to each (sub)expression.

\(f(expr_1, expr_2, ..., expr_n)\) is convex if \(\text{ } f\)
is a convex function and for each \(expr_{i}\) one of the following
conditions holds:


	\(f\) is increasing in argument \(i\) and \(expr_{i}\) is convex.

	\(f\) is decreasing in argument \(i\) and \(expr_{i}\) is
concave.

	\(expr_{i}\) is affine or constant.



\(f(expr_1, expr_2, ..., expr_n)\) is concave if \(\text{ } f\)
is a concave function and for each \(expr_{i}\) one of the following
conditions holds:


	\(f\) is increasing in argument \(i\) and \(expr_{i}\) is
concave.

	\(f\) is decreasing in argument \(i\) and \(expr_{i}\) is convex.

	\(expr_{i}\) is affine or constant.



\(f(expr_1, expr_2, ..., expr_n)\) is affine if \(\text{ } f\)
is an affine function and each \(expr_{i}\) is affine.

If none of the three rules apply, the expression
\(f(expr_1, expr_2, ..., expr_n)\) is marked as having unknown
curvature.

Whether a function is increasing or decreasing in an argument may depend
on the sign of the argument. For instance, square is increasing for
positive arguments and decreasing for negative arguments.

The curvature of an expression is stored as expr.curvature:

x = Variable()
a = Parameter(sign="positive")

print "curvature of x:", x.curvature
print "curvature of a:", a.curvature
print "curvature of square(x):", square(x).curvature
print "curvature of sqrt(x):", sqrt(x).curvature





curvature of x: AFFINE
curvature of a: CONSTANT
curvature of square(x): CONVEX
curvature of sqrt(x): CONCAVE








Infix operators

The infix operators +, -, *, / are treated exactly like functions.
The infix operators + and - are affine, so the rules above are
used to flag the curvature. For example, expr1 + expr2 is flagged as
convex if expr1 and expr2 are convex.

expr1*expr2 is allowed only when one of the expressions is constant.
If both expressions are non-constant, CVXPY will raise an exception.
expr1/expr2 is allowed only when expr2 is a scalar constant. The
curvature rules above apply. For example, expr1/expr2 is convex when
expr1 is concave and expr2 is negative and constant.




Example 1

DCP analysis breaks expressions down into subexpressions. The tree
visualization below shows how this works for the expression
2*square(x) + 3. Each subexpression is shown in a blue box. We mark
its curvature on the left and its sign on the right.

[image: ../../_images/example1.png]



Example 2

We’ll walk through the application of the DCP rules to the expression
sqrt(1 + square(x)).

[image: ../../_images/example2.png]
The variable x has affine curvature and unknown sign. The square
function is convex and non-monotone for arguments of unknown sign. It
can take the affine expression x as an argument; the result
square(x) is convex.

The arithmetic operator + is affine and increasing, so the
composition 1 + square(x) is convex by the curvature rule for convex
functions. The function sqrt is concave and increasing, which means
it can only take a concave argument. Since 1 + square(x) is convex,
sqrt(1 + square(x)) violates the DCP rules and cannot be verified as
convex.

In fact, sqrt(1 + square(x)) is a convex function of x, but the
DCP rules are not able to verify convexity. If the expression is written
as norm(vstack(1, x), 2), the L2 norm of the vector \([1,x]\),
which has the same value as sqrt(1 + square(x)), then it will be
certified as convex using the DCP rules.

print "sqrt(1 + square(x)) curvature:",
print sqrt(1 + square(x)).curvature
print "norm(vstack(1, x), 2) curvature:",
print norm(vstack(1, x), 2).curvature





sqrt(1 + square(x)) curvature: UNKNOWN
norm(vstack(1, x), 2) curvature: CONVEX








DCP problems

A problem is constructed from an objective and a list of constraints. If
a problem follows the DCP rules, it is guaranteed to be convex and
solvable by CVXPY. The DCP rules require that the problem objective have
one of two forms:


	Minimize(convex)

	Maximize(concave)



The only valid constraints under the DCP rules are


	affine == affine

	convex <= concave

	concave >= convex



You can check that a problem, constraint, or objective satisfies the DCP
rules by calling object.is_dcp(). Here are some examples of DCP and
non-DCP problems:

x = Variable()
y = Variable()

# DCP problems.
prob1 = Problem(Minimize(square(x - y)), [x + y >= 0])
prob2 = Problem(Maximize(sqrt(x - y)),
                [2*x - 3 == y,
                 square(x) <= 2])

print "prob1 is DCP:", prob1.is_dcp()
print "prob2 is DCP:", prob2.is_dcp()

# Non-DCP problems.

# A non-DCP objective.
prob3 = Problem(Maximize(square(x)))

print "prob3 is DCP:", prob3.is_dcp()
print "Maximize(square(x)) is DCP:", Maximize(square(x)).is_dcp()

# A non-DCP constraint.
prob4 = Problem(Minimize(square(x)), [sqrt(x) <= 2])

print "prob4 is DCP:", prob4.is_dcp()
print "sqrt(x) <= 2 is DCP:", (sqrt(x) <= 2).is_dcp()





prob1 is DCP: True
prob2 is DCP: True
prob3 is DCP: False
Maximize(square(x)) is DCP: False
prob4 is DCP: False
sqrt(x) <= 2 is DCP: False





CVXPY will raise an exception if you call problem.solve() on a
non-DCP problem.

# A non-DCP problem.
prob = Problem(Minimize(sqrt(x)))

try:
    prob.solve()
except Exception as e:
    print e





Problem does not follow DCP rules.
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Functions

This section of the tutorial describes the functions that can be applied
to CVXPY expressions. CVXPY uses the function information in this
section and the DCP rules to mark expressions with a
sign and curvature.


Operators

The infix operators +, -, *, / are treated as functions. + and
- are affine functions. * and / are affine in
CVXPY because expr1*expr2 is allowed only when one of the
expressions is constant and expr1/expr2 is allowed only when
expr2 is a scalar constant.


Indexing and slicing

All non-scalar expressions can be indexed using the syntax
expr[i, j]. Indexing is an affine function. The syntax expr[i]
can be used as a shorthand for expr[i, 0] when expr is a column
vector. Similarly, expr[i] is shorthand for expr[0, i] when
expr is a row vector.

Non-scalar expressions can also be sliced into using the standard Python
slicing syntax. For example, expr[i:j:k, r] selects every kth
element in column r of expr, starting at row i and ending at row
j-1.




Transpose

The transpose of any expression can be obtained using the syntax
expr.T. Transpose is an affine function.




Power

For any CVXPY expression expr,
the power operator expr**p is equivalent to
the function power(expr, p).






Scalar functions

A scalar function takes one or more scalars, vectors, or matrices as arguments
and returns a scalar.











	Function
	Meaning
	Domain
	Sign
	Curvature
	Monotonicity




	entr(X)
	\(\sum_{ij}-X_{ij} \log (X_{ij})\)
	\(X_{ij} > 0\)
	[image: unknown] unknown
	[image: concave] concave
	None


	geo_mean(x)

geo_mean(x, p)

\(p \in \mathbf{R}^n_{+}\)

\(p \neq 0\)


	\(x_1^{1/n} \cdots x_n^{1/n}\)

\(\left(x_1^{p_1} \cdots x_n^{p_n}\right)^{\frac{1}{\mathbf{1}^T p}}\)


	\(x \in \mathbf{R}^n_{+}\)
	[image: positive] positive
	[image: concave] concave
	[image: incr] incr.


	harmonic_mean(x)
	\(\frac{n}{\frac{1}{x_1} + \cdots + \frac{1}{x_n}}\)
	\(x \in \mathbf{R}^n_{+}\)
	[image: positive] positive
	[image: concave] concave
	[image: incr] incr.


	kl_div(X, Y)
	\(\sum_{ij} X_{ij} \log(X_{ij}/Y_{ij}) -X_{ij}+Y_{ij}\)
	\(X_{ij} > 0\)

\(Y_{ij} > 0\)


	[image: positive] positive
	[image: convex] convex
	None


	lambda_max(X)
	\(\lambda_{\max}(X)\)
	\(X \in \mathbf{S}^n\)
	[image: unknown] unknown
	[image: convex] convex
	None


	lambda_min(X)
	\(\lambda_{\min}(X)\)
	\(X \in \mathbf{S}^n\)
	[image: unknown] unknown
	[image: concave] concave
	None


	lambda_sum_largest(X,k)

\(k = 1,\ldots, n\)


	\(\text{sum of $k$ largest}\\ \text{eigenvalues of $X$}\)
	\(X \in\mathbf{S}^{n}\)
	[image: unknown] unknown
	[image: convex] convex
	None


	lambda_sum_smallest(X,k)

\(k = 1,\ldots, n\)


	\(\text{sum of $k$ smallest}\\ \text{eigenvalues of $X$}\)
	\(X \in\mathbf{S}^{n}\)
	[image: unknown] unknown
	[image: concave] concave
	None


	log_det(X)
	\(\log \left(\det (X)\right)\)
	\(X \in \mathbf{S}^n_+\)
	[image: unknown] unknown
	[image: concave] concave
	None


	log_sum_exp(X)
	\(\log \left(\sum_{ij}e^{X_{ij}}\right)\)
	\(X \in\mathbf{R}^{m \times n}\)
	[image: unknown] unknown
	[image: convex] convex
	[image: incr] incr.


	matrix_frac(x, P)
	\(x^T P^{-1} x\)
	\(x \in \mathbf{R}^n\)

\(P \in\mathbf{S}^n_{++}\)


	[image: positive] positive
	[image: convex] convex
	None


	max_entries(X)
	\(\max_{ij}\left\{ X_{ij}\right\}\)
	\(X \in\mathbf{R}^{m \times n}\)
	same as X
	[image: convex] convex
	[image: incr] incr.


	min_entries(X)
	\(\min_{ij}\left\{ X_{ij}\right\}\)
	\(X \in\mathbf{R}^{m \times n}\)
	same as X
	[image: concave] concave
	[image: incr] incr.


	mixed_norm(X, p, q)
	\(\left(\sum_k\left(\sum_l\lvert x_{k,l}\rvert^p\right)^{q/p}\right)^{1/q}\)
	\(X \in\mathbf{R}^{n \times n}\)
	[image: positive] positive
	[image: convex] convex
	None


	norm(x)

norm(x, 2)


	\(\sqrt{\sum_{i}x_{i}^2 }\)
	\(X \in\mathbf{R}^{n}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(x_{i} \geq 0\)

[image: decr] for \(x_{i} \leq 0\)




	norm(X, “fro”)
	\(\sqrt{\sum_{ij}X_{ij}^2 }\)
	\(X \in\mathbf{R}^{m \times n}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(X_{ij} \geq 0\)

[image: decr] for \(X_{ij} \leq 0\)




	norm(X, 1)
	\(\sum_{ij}\lvert X_{ij} \rvert\)
	\(X \in\mathbf{R}^{m \times n}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(X_{ij} \geq 0\)

[image: decr] for \(X_{ij} \leq 0\)




	norm(X, “inf”)
	\(\max_{ij} \{\lvert X_{ij} \rvert\}\)
	\(X \in\mathbf{R}^{m \times n}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(X_{ij} \geq 0\)

[image: decr] for \(X_{ij} \leq 0\)




	norm(X, “nuc”)
	\(\mathrm{tr}\left(\left(X^T X\right)^{1/2}\right)\)
	\(X \in\mathbf{R}^{m \times n}\)
	[image: positive] positive
	[image: convex] convex
	None


	norm(X)

norm(X, 2)


	\(\sqrt{\lambda_{\max}\left(X^T X\right)}\)
	\(X \in\mathbf{R}^{m \times n}\)
	[image: positive] positive
	[image: convex] convex
	None


	pnorm(X, p)

\(p \geq 1\)

or p = 'inf'


	\(\|X\|_p = \left(\sum_{ij} |X_{ij}|^p \right)^{1/p}\)
	\(X \in \mathbf{R}^{m \times n}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(X_{ij} \geq 0\)

[image: decr] for \(X_{ij} \leq 0\)




	pnorm(X, p)

\(p < 1\), \(p \neq 0\)


	\(\|X\|_p = \left(\sum_{ij} X_{ij}^p \right)^{1/p}\)
	\(X \in \mathbf{R}^{m \times n}_+\)
	[image: positive] positive
	[image: concave] concave
	[image: incr] incr.


	quad_form(x, P)

constant \(P \in \mathbf{S}^n_+\)


	\(x^T P x\)
	\(x \in \mathbf{R}^n\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(x_i \geq 0\)

[image: decr] for \(x_i \leq 0\)




	quad_form(x, P)

constant \(P \in \mathbf{S}^n_-\)


	\(x^T P x\)
	\(x \in \mathbf{R}^n\)
	[image: negative] negative
	[image: concave] concave
	[image: decr] for \(x_i \geq 0\)

[image: incr] for \(x_i \leq 0\)




	quad_form(c, X)

constant \(c \in \mathbf{R}^n\)


	\(c^T X c\)
	\(X \in\mathbf{R}^{n \times n}\)
	dependsonc,X
	[image: affine] affine
	dependsonc


	quad_over_lin(X, y)
	\(\left(\sum_{ij}X_{ij}^2\right)/y\)
	\(x \in \mathbf{R}^n\)

\(y > 0\)


	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(X_{ij} \geq 0\)

[image: decr] for \(X_{ij} \leq 0\)

[image: decr] decr. in \(y\)




	sum_entries(X)
	\(\sum_{ij}X_{ij}\)
	\(X \in\mathbf{R}^{m \times n}\)
	same as X
	[image: affine] affine
	[image: incr] incr.


	sum_largest(X, k)

\(k = 1,2,\ldots\)


	\(\text{sum of } k\text{ largest }X_{ij}\)
	\(X \in\mathbf{R}^{m \times n}\)
	same as X
	[image: convex] convex
	[image: incr] incr.


	sum_smallest(X, k)

\(k = 1,2,\ldots\)


	\(\text{sum of } k\text{ smallest }X_{ij}\)
	\(X \in\mathbf{R}^{m \times n}\)
	same as X
	[image: concave] concave
	[image: incr] incr.


	sum_squares(X)
	\(\sum_{ij}X_{ij}^2\)
	\(X \in\mathbf{R}^{m \times n}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(X_{ij} \geq 0\)

[image: decr] for \(X_{ij} \leq 0\)




	trace(X)
	\(\mathrm{tr}\left(X \right)\)
	\(X \in\mathbf{R}^{n \times n}\)
	same as X
	[image: affine] affine
	[image: incr] incr.






Clarifications

The domain \(\mathbf{S}^n\) refers to the set of symmetric matrices. The domains \(\mathbf{S}^n_+\) and \(\mathbf{S}^n_-\) refer to the set of positive semi-definite and negative semi-definite matrices, respectively. Similarly, \(\mathbf{S}^n_{++}\) and \(\mathbf{S}^n_{--}\) refer to the set of positive definite and negative definite matrices, respectively.

For a vector expression x, norm(x) and norm(x, 2) give the Euclidean norm. For a matrix expression X, however, norm(X) and norm(X, 2) give the spectral norm.

The function norm(X, "fro") is called the Frobenius norm [http://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm]
and norm(X, "nuc") the nuclear norm [http://en.wikipedia.org/wiki/Matrix_norm#Schatten_norms]. The nuclear norm can also be defined as the sum of X‘s singular values.

The functions max_entries and min_entries give the largest and smallest entry, respectively, in a single expression. These functions should not be confused with max_elemwise and min_elemwise (see Elementwise functions). Use max_elemwise and min_elemwise to find the max or min of a list of scalar expressions.

The function sum_entries sums all the entries in a single expression. The built-in Python sum should be used to add together a list of expressions. For example, the following code sums the columns of a matrix variable:

X = Variable(100, 100)
col_sum = sum([X[:, i] for i in range(X.size[1])])










Elementwise functions

These functions operate on each element of their arguments. For example, if X is a 5 by 4 matrix variable,
then abs(X) is a 5 by 4 matrix expression. abs(X)[1, 2] is equivalent to abs(X[1, 2]).

Elementwise functions that take multiple arguments, such as max_elemwise and mul_elemwise, operate on the corresponding elements of each argument.
For example, if X and Y are both 3 by 3 matrix variables, then max_elemwise(X, Y) is a 3 by 3 matrix expression.
max_elemwise(X, Y)[2, 0] is equivalent to max_elemwise(X[2, 0], Y[2, 0]). This means all arguments must have the same dimensions or be
scalars, which are promoted.











	Function
	Meaning
	Domain
	Sign
	Curvature
	Monotonicity




	abs(x)
	\(\lvert x \rvert\)
	\(x \in \mathbf{R}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(x \geq 0\)

[image: decr] for \(x \leq 0\)




	exp(x)
	\(e^x\)
	\(x \in \mathbf{R}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] incr.


	huber(x, M=1)

\(M \geq 0\)


	\(\begin{cases}x^2 &|x| \leq M  \\2M|x| - M^2&|x| >M\end{cases}\)
	\(x \in \mathbf{R}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(x \geq 0\)

[image: decr] for \(x \leq 0\)




	inv_pos(x)
	\(1/x\)
	\(x > 0\)
	[image: positive] positive
	[image: convex] convex
	[image: decr] decr.


	log(x)
	\(\log(x)\)
	\(x > 0\)
	[image: unknown] unknown
	[image: concave] concave
	[image: incr] incr.


	log1p(x)
	\(\log(x+1)\)
	\(x > -1\)
	same as x
	[image: concave] concave
	[image: incr] incr.


	max_elemwise(x1,...,xk)
	\(\max \left\{x_1, \ldots , x_k\right\}\)
	\(x_i \in \mathbf{R}\)
	\(\max(\mathrm{sign}(x_1))\)
	[image: convex] convex
	[image: incr] incr.


	min_elemwise(x1,...,xk)
	\(\min \left\{x_1, \ldots , x_k\right\}\)
	\(x_i \in \mathbf{R}\)
	\(\min(\mathrm{sign}(x_1))\)
	[image: concave] concave
	[image: incr] incr.


	mul_elemwise(c,x)

\(c \in \mathbf{R}\)


	c*x
	\(x \in\mathbf{R}\)
	\(\mathrm{sign}(cx)\)
	[image: affine] affine
	dependsonc


	neg(x)
	\(\max \left\{-x, 0 \right\}\)
	\(x \in \mathbf{R}\)
	[image: positive] positive
	[image: convex] convex
	[image: decr] decr.


	pos(x)
	\(\max \left\{x, 0 \right\}\)
	\(x \in \mathbf{R}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] incr.


	power(x, 0)
	\(1\)
	\(x \in \mathbf{R}\)
	[image: positive] positive
	constant
	


	power(x, 1)
	\(x\)
	\(x \in \mathbf{R}\)
	same as x
	[image: affine] affine
	[image: incr] incr.


	power(x, p)

\(p = 2, 4, 8, \ldots\)


	\(x^p\)
	\(x \in \mathbf{R}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(x \geq 0\)

[image: decr] for \(x \leq 0\)




	power(x, p)

\(p < 0\)


	\(x^p\)
	\(x > 0\)
	[image: positive] positive
	[image: convex] convex
	[image: decr] decr.


	power(x, p)

\(0 < p < 1\)


	\(x^p\)
	\(x \geq 0\)
	[image: positive] positive
	[image: concave] concave
	[image: incr] incr.


	power(x, p)

\(p > 1,\ p \neq 2, 4, 8, \ldots\)


	\(x^p\)
	\(x \geq 0\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] incr.


	scalene(x, alpha, beta)

\(\text{alpha} \geq 0\)

\(\text{beta} \geq 0\)


	\(\alpha\mathrm{pos}(x)+ \beta\mathrm{neg}(x)\)
	\(x \in \mathbf{R}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(x \geq 0\)

[image: decr] for \(x \leq 0\)




	sqrt(x)
	\(\sqrt x\)
	\(x \geq 0\)
	[image: positive] positive
	[image: concave] concave
	[image: incr] incr.


	square(x)
	\(x^2\)
	\(x \in \mathbf{R}\)
	[image: positive] positive
	[image: convex] convex
	[image: incr] for \(x \geq 0\)

[image: decr] for \(x \leq 0\)










Vector/Matrix functions

A vector/matrix function takes one or more scalars, vectors, or matrices as arguments
and returns a vector or matrix.











	Function
	Meaning
	Domain
	Sign
	Curvature
	Monotonicity




	bmat([[X11,...,X1q],
...,
[Xp1,...,Xpq]])
	\(\left[\begin{matrix} X^{(1,1)} &  \cdots &  X^{(1,q)} \\ \vdots &   & \vdots \\ X^{(p,1)} & \cdots &   X^{(p,q)} \end{matrix}\right]\)
	\(X^{(i,j)} \in\mathbf{R}^{m_i \times n_j}\)
	\(\mathrm{sign}\left(\sum_{ij} X^{(i,j)}_{11}\right)\)
	[image: affine] affine
	[image: incr] incr.


	conv(c, x)

\(c\in\mathbf{R}^m\)


	\(c*x\)
	\(x\in \mathbf{R}^n\)
	\(\mathrm{sign}\left(c_{1}x_{1}\right)\)
	[image: affine] affine
	dependsonc


	diag(x)
	\(\left[\begin{matrix}x_1  & &  \\& \ddots & \\& & x_n\end{matrix}\right]\)
	\(x \in\mathbf{R}^{n}\)
	same as x
	[image: affine] affine
	[image: incr] incr.


	diag(X)
	\(\left[\begin{matrix}X_{11}  \\\vdots \\X_{nn}\end{matrix}\right]\)
	\(X \in\mathbf{R}^{n \times n}\)
	same as X
	[image: affine] affine
	[image: incr] incr.


	diff(x, k=1)

\(k \in 0,1,2,\ldots\)


	vector of kth order differences
	\(x \in\mathbf{R}^{n}\)
	same as x
	[image: affine] affine
	[image: incr] incr.


	hstack(X1,...,Xk)
	\(\left[\begin{matrix}X^{(1)}  \cdots    X^{(k)}\end{matrix}\right]\)
	\(X^{(i)} \in\mathbf{R}^{m \times n_i}\)
	\(\mathrm{sign}\left(\sum_i X^{(i)}_{11}\right)\)
	[image: affine] affine
	[image: incr] incr.


	kron(C, X)

\(C\in\mathbf{R}^{p \times q}\)


	\(\left[\begin{matrix}C_{11}X & \cdots & C_{1q}X \\ \vdots  &        & \vdots \\ C_{p1}X &  \cdots      & C_{pq}X     \end{matrix}\right]\)
	\(X \in\mathbf{R}^{m \times n}\)
	\(\mathrm{sign}\left(C_{11}X_{11}\right)\)
	[image: affine] affine
	dependson C


	reshape(X,n’,m’)
	\(X' \in\mathbf{R}^{m' \times n'}\)
	\(X \in\mathbf{R}^{m \times n}\)

\(m'n' = mn\)


	same as X
	[image: affine] affine
	[image: incr] incr.


	vec(X)
	\(x' \in\mathbf{R}^{mn}\)
	\(X \in\mathbf{R}^{m \times n}\)
	same as X
	[image: affine] affine
	[image: incr] incr.


	vstack(X1,...,Xk)
	\(\left[\begin{matrix}X^{(1)}  \\ \vdots  \\X^{(k)}\end{matrix}\right]\)
	\(X^{(i)} \in\mathbf{R}^{m_i \times n}\)
	\(\mathrm{sign}\left(\sum_i X^{(i)}_{11}\right)\)
	[image: affine] affine
	[image: incr] incr.






Clarifications

The input to bmat is a list of lists of CVXPY expressions.
It constructs a block matrix.
The elements of each inner list are stacked horizontally and then the resulting block matrices are stacked vertically.

The output \(y\) of conv(c, x) has size \(n+m-1\) and is defined as
\(y[k]=\sum_{j=0}^k c[j]x[k-j]\).

The output \(x'\) of vec(X) is the matrix \(X\) flattened in column-major order into a vector.
Formally, \(x'_i = X_{i \bmod{m}, \left \lfloor{i/m}\right \rfloor }\).

The output \(X'\) of reshape(X, m', n') is the matrix \(X\) cast into an \(m' \times n'\) matrix.
The entries are taken from \(X\) in column-major order and stored in \(X'\) in column-major order.
Formally, \(X'_{ij} = \mathbf{vec}(X)_{m'j + i}\).
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Advanced Features

This section of the tutorial covers features of CVXPY intended for users with advanced knowledge of convex optimization. We recommend Convex Optimization [http://www.stanford.edu/~boyd/cvxbook/] by Boyd and Vandenberghe as a reference for any terms you are unfamiliar with.


Dual variables

You can use CVXPY to find the optimal dual variables for a problem. When you call prob.solve() each dual variable in the solution is stored in the dual_value field of the constraint it corresponds to.

from cvxpy import *

# Create two scalar optimization variables.
x = Variable()
y = Variable()

# Create two constraints.
constraints = [x + y == 1,
               x - y >= 1]

# Form objective.
obj = Minimize(square(x - y))

# Form and solve problem.
prob = Problem(obj, constraints)
prob.solve()

# The optimal dual variable (Lagrange multiplier) for
# a constraint is stored in constraint.dual_value.
print "optimal (x + y == 1) dual variable", constraints[0].dual_value
print "optimal (x - y >= 1) dual variable", constraints[1].dual_value
print "x - y value:", (x - y).value





optimal (x + y == 1) dual variable 6.47610300459e-18
optimal (x - y >= 1) dual variable 2.00025244976
x - y value: 0.999999986374





The dual variable for x - y >= 1 is 2. By complementarity this implies that x - y is 1, which we can see is true. The fact that the dual variable is non-zero also tells us that if we tighten x - y >= 1, (i.e., increase the right-hand side), the optimal value of the problem will increase.




Semidefinite matrices

Many convex optimization problems involve constraining matrices to be positive or negative semidefinite (e.g., SDPs).
You can do this in CVXPY in two ways.
The first way is to use
Semidef(n) to create an n by n variable constrained to be symmetric and positive semidefinite. For example,

# Creates a 100 by 100 positive semidefinite variable.
X = Semidef(100)

# You can use X anywhere you would use
# a normal CVXPY variable.
obj = Minimize(norm(X) + sum_entries(X))





The second way is to create a positive semidefinite cone constraint using the >> or << operator.
If X and Y are n by n variables,
the constraint X >> Y means that \(z^T(X - Y)z \geq 0\), for all \(z \in \mathcal{R}^n\).
The constraint does not require that X and Y be symmetric.

The following code shows how to to constrain square matrix expressions to be positive or negative
semidefinite (but not necessarily symmetric).
You cannot apply the >> and << operators to non-square matrices.

# expr1 must be positive semidefinite.
constr1 = (expr1 >> 0)

# expr2 must be negative semidefinite.
constr2 = (expr2 << 0)





To constrain a matrix expression to be symmetric, simply write

# expr must be symmetric.
constr = (expr == expr.T)





You can also use Symmetric(n) to create an n by n variable constrained to be symmetric.




Mixed-integer programs

In mixed-integer programs, certain variables are constrained to be boolean or integer valued. You can construct mixed-integer programs using the Bool and Int constructors. These take the same arguments as the Variable constructor, and they return a variable constrained to have only boolean or integer valued entries.

The following code shows the Bool and Int constructors in action:

# Creates a 10-vector constrained to have boolean valued entries.
x = Bool(10)

# expr1 must be boolean valued.
constr1 = (expr1 == x)

# Creates a 5 by 7 matrix constrained to have integer valued entries.
Z = Int(5, 7)

# expr2 must be integer valued.
constr2 = (expr2 == Z)








Solve method options

The solve method takes optional arguments that let you change how CVXPY solves the problem. Here is the signature for the solve method:


	
solve(solver=None, verbose=False, **kwargs)

	Solves a DCP compliant optimization problem.





	Parameters:	
	solver (str, optional) – The solver to use.

	verbose (bool, optional) – Overrides the default of hiding solver output.

	kwargs – Additional keyword arguments specifying solver specific options.






	Returns:	The optimal value for the problem, or a string indicating why the problem could not be solved.











We will discuss the optional arguments in detail below.


Choosing a solver

CVXPY is distributed with the open source solvers ECOS [https://www.embotech.com/ECOS], ECOS_BB [https://www.embotech.com/ECOS], CVXOPT [http://cvxopt.org/], and SCS [http://github.com/cvxgrp/scs].
CVXPY also supports GLPK [https://www.gnu.org/software/glpk/] and GLPK_MI [https://www.gnu.org/software/glpk/] via the CVXOPT GLPK interface, GUROBI [http://www.gurobi.com/], and Elemental [http://libelemental.org/].
The table below shows the types of problems the solvers can handle.











	
	LP
	SOCP
	SDP
	EXP
	MIP




	GLPK [https://www.gnu.org/software/glpk/]
	X
	
	
	
	


	GLPK_MI [https://www.gnu.org/software/glpk/]
	X
	
	
	
	X


	Elemental [http://libelemental.org/]
	X
	X
	
	
	


	ECOS [https://www.embotech.com/ECOS]
	X
	X
	
	
	


	ECOS_BB [https://www.embotech.com/ECOS]
	X
	X
	
	
	X


	GUROBI [http://www.gurobi.com/]
	X
	X
	
	
	X


	CVXOPT [http://cvxopt.org/]
	X
	X
	X
	X
	


	SCS [http://github.com/cvxgrp/scs]
	X
	X
	X
	X
	





Here EXP refers to problems with exponential cone constraints. The exponential cone is defined as


\(\{(x,y,z) \mid y > 0, y\exp(x/y) \leq z \} \cup \{ (x,y,z) \mid x \leq 0, y = 0, z \geq 0\}\).


You cannot specify cone constraints explicitly in CVXPY, but cone constraints are added when CVXPY converts the problem into standard form.

By default CVXPY calls the solver most specialized to the problem type. For example, ECOS [https://www.embotech.com/ECOS] is called for SOCPs. SCS [http://github.com/cvxgrp/scs] and CVXOPT [http://cvxopt.org/] can both handle all problems (except mixed-integer programs). CVXOPT [http://cvxopt.org/] is preferred by default. For many problems SCS [http://github.com/cvxgrp/scs] will be faster, though less accurate. ECOS_BB [https://www.embotech.com/ECOS] is called for mixed-integer LPs and SOCPs.

You can change the solver called by CVXPY using the solver keyword argument. If the solver you choose cannot solve the problem, CVXPY will raise an exception. Here’s example code solving the same problem with different solvers.

# Solving a problem with different solvers.
x = Variable(2)
obj = Minimize(x[0] + norm(x, 1))
constraints = [x >= 2]
prob = Problem(obj, constraints)

# Solve with ECOS.
prob.solve(solver=ECOS)
print "optimal value with ECOS:", prob.value

# Solve with ECOS_BB.
prob.solve(solver=ECOS_BB)
print "optimal value with ECOS_BB:", prob.value

# Solve with CVXOPT.
prob.solve(solver=CVXOPT)
print "optimal value with CVXOPT:", prob.value

# Solve with SCS.
prob.solve(solver=SCS)
print "optimal value with SCS:", prob.value

# Solve with GLPK.
prob.solve(solver=GLPK)
print "optimal value with GLPK:", prob.value

# Solve with GLPK_MI.
prob.solve(solver=GLPK_MI)
print "optimal value with GLPK_MI:", prob.value

# Solve with GUROBI.
prob.solve(solver=GUROBI)
print "optimal value with GUROBI:", prob.value

# Solve with Elemental.
prob.solve(solver=ELEMENTAL)
print "optimal value with Elemental:", prob.value





optimal value with ECOS: 5.99999999551
optimal value with ECOS_BB: 5.99999999551
optimal value with CVXOPT: 6.00000000512
optimal value with SCS: 6.00046055789
optimal value with GLPK: 6.0
optimal value with GLPK_MI: 6.0
optimal value with GUROBI: 6.0
optimal value with Elemental: 6.0000044085242727





Use the installed_solvers utility function to get a list of the solvers your installation of CVXPY supports.

print installed_solvers()





['CVXOPT', 'GLPK', 'GLPK_MI', 'ECOS_BB', 'ECOS', 'SCS', 'GUROBI', 'ELEMENTAL']








Viewing solver output

All the solvers can print out information about their progress while solving the problem. This information can be useful in debugging a solver error. To see the output from the solvers, set verbose=True in the solve method.

# Solve with ECOS and display output.
prob.solve(solver=ECOS, verbose=True)
print "optimal value with ECOS:", prob.value





ECOS 1.0.3 - (c) A. Domahidi, Automatic Control Laboratory, ETH Zurich, 2012-2014.

It     pcost         dcost      gap     pres    dres     k/t     mu      step     IR
 0   +0.000e+00   +4.000e+00   +2e+01   2e+00   1e+00   1e+00   3e+00    N/A     1 1 -
 1   +6.451e+00   +8.125e+00   +5e+00   7e-01   5e-01   7e-01   7e-01   0.7857   1 1 1
 2   +6.788e+00   +6.839e+00   +9e-02   1e-02   8e-03   3e-02   2e-02   0.9829   1 1 1
 3   +6.828e+00   +6.829e+00   +1e-03   1e-04   8e-05   3e-04   2e-04   0.9899   1 1 1
 4   +6.828e+00   +6.828e+00   +1e-05   1e-06   8e-07   3e-06   2e-06   0.9899   2 1 1
 5   +6.828e+00   +6.828e+00   +1e-07   1e-08   8e-09   4e-08   2e-08   0.9899   2 1 1

OPTIMAL (within feastol=1.3e-08, reltol=1.5e-08, abstol=1.0e-07).
Runtime: 0.000121 seconds.

optimal value with ECOS: 6.82842708233








Setting solver options

The ECOS [https://www.embotech.com/ECOS], ECOS_BB [https://www.embotech.com/ECOS], CVXOPT [http://cvxopt.org/], and SCS [http://github.com/cvxgrp/scs] Python interfaces allow you to set solver options such as the maximum number of iterations. You can pass these options along through CVXPY as keyword arguments.

For example, here we tell SCS to use an indirect method for solving linear equations rather than a direct method.

# Solve with SCS, use sparse-indirect method.
prob.solve(solver=SCS, verbose=True, use_indirect=True)
print "optimal value with SCS:", prob.value





----------------------------------------------------------------------------
    SCS v1.0.5 - Splitting Conic Solver
    (c) Brendan O'Donoghue, Stanford University, 2012
----------------------------------------------------------------------------
Lin-sys: sparse-indirect, nnz in A = 13, CG tol ~ 1/iter^(2.00)
EPS = 1.00e-03, ALPHA = 1.80, MAX_ITERS = 2500, NORMALIZE = 1, SCALE = 5.00
Variables n = 5, constraints m = 9
Cones:  linear vars: 6
    soc vars: 3, soc blks: 1
Setup time: 2.78e-04s
----------------------------------------------------------------------------
 Iter | pri res | dua res | rel gap | pri obj | dua obj | kap/tau | time (s)
----------------------------------------------------------------------------
     0| 4.60e+00  5.78e-01       nan      -inf       inf       inf  3.86e-05
    60| 3.92e-05  1.12e-04  6.64e-06  6.83e+00  6.83e+00  1.41e-17  9.51e-05
----------------------------------------------------------------------------
Status: Solved
Timing: Total solve time: 9.76e-05s
    Lin-sys: avg # CG iterations: 1.00, avg solve time: 2.24e-07s
    Cones: avg projection time: 4.90e-08s
----------------------------------------------------------------------------
Error metrics:
|Ax + s - b|_2 / (1 + |b|_2) = 3.9223e-05
|A'y + c|_2 / (1 + |c|_2) = 1.1168e-04
|c'x + b'y| / (1 + |c'x| + |b'y|) = 6.6446e-06
dist(s, K) = 0, dist(y, K*) = 0, s'y = 0
----------------------------------------------------------------------------
c'x = 6.8284, -b'y = 6.8285
============================================================================
optimal value with SCS: 6.82837896975





Here’s the complete list of solver options.

ECOS [https://www.embotech.com/ECOS] options:


	'max_iters'

	maximum number of iterations (default: 100).

	'abstol'

	absolute accuracy (default: 1e-7).

	'reltol'

	relative accuracy (default: 1e-6).

	'feastol'

	tolerance for feasibility conditions (default: 1e-7).

	'abstol_inacc'

	absolute accuracy for inaccurate solution (default: 5e-5).

	'reltol_inacc'

	relative accuracy for inaccurate solution (default: 5e-5).

	'feastol_inacc'

	tolerance for feasibility condition for inaccurate solution (default: 1e-4).



ECOS_BB [https://www.embotech.com/ECOS] options:


	'mi_max_iters'

	maximum number of branch and bound iterations (default: 1000)

	'mi_abs_eps'

	absolute tolerance between upper and lower bounds (default: 1e-6)

	'mi_rel_eps'

	relative tolerance, (U-L)/L, between upper and lower bounds (default: 1e-3)



CVXOPT [http://cvxopt.org/] options:


	'max_iters'

	maximum number of iterations (default: 100).

	'abstol'

	absolute accuracy (default: 1e-7).

	'reltol'

	relative accuracy (default: 1e-6).

	'feastol'

	tolerance for feasibility conditions (default: 1e-7).

	'refinement'

	number of iterative refinement steps after solving KKT system (default: 1).

	'kktsolver'

	The KKT solver used. The default, “chol”, does a Cholesky factorization with preprocessing to make A and [A; G] full rank.
The “robust” solver does an LDL factorization without preprocessing.
It is slower, but more robust.



SCS [http://github.com/cvxgrp/scs] options:


	'max_iters'

	maximum number of iterations (default: 2500).

	'eps'

	convergence tolerance (default: 1e-3).

	'alpha'

	relaxation parameter (default: 1.8).

	'normalize'

	whether to precondition data matrices (default: True).

	'use_indirect'

	whether to use indirect solver for KKT sytem (instead of direct) (default: False).








Getting the standard form

If you are interested in getting the standard form that CVXPY produces for a problem, you can use the get_problem_data method. Calling get_problem_data(solver) on a problem object returns a dict of the arguments that CVXPY would pass to that solver. If the solver you choose cannot solve the problem, CVXPY will raise an exception.

# Get ECOS arguments.
data = prob.get_problem_data(ECOS)

# Get ECOS_BB arguments.
data = prob.get_problem_data(ECOS_BB)

# Get CVXOPT arguments.
data = prob.get_problem_data(CVXOPT)

# Get SCS arguments.
data = prob.get_problem_data(SCS)





After you solve the standard conic form problem returned by get_problem_data, you can unpack the raw solver output using the unpack_results method. Calling unpack_results(solver, solver_output) on a problem will update the values of all primal and dual variables as well as the problem value and status.

For example, the following code is equivalent to solving the problem directly with CVXPY:

# Get ECOS arguments.
data = prob.get_problem_data(ECOS)
# Call ECOS solver.
solver_output = ecos.solve(data["c"], data["G"], data["h"],
                           data["dims"], data["A"], data["b"])
# Unpack raw solver output.
prob.unpack_results(ECOS, solver_output)
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Examples

These examples show many different ways to use CVXPY. The Basic Examples section shows how to solve some common optimization problems in CVXPY. The Advanced Examples section contains more complex examples aimed at experts in convex optimization.


Basic Examples


	Total variation in-painting [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/tv_inpainting.ipynb]

	Control [http://nbviewer.ipython.org/github/cvxgrp/cvx_short_course/blob/master/intro/control.ipynb]

	SVM classifier with regularization [http://nbviewer.ipython.org/github/cvxgrp/cvx_short_course/blob/master/intro/SVM.ipynb]

	Portfolio optimization [http://nbviewer.ipython.org/github/cvxgrp/cvx_short_course/blob/master/applications/portfolio_optimization.ipynb]

	Worst-case risk analysis [http://nbviewer.ipython.org/github/cvxgrp/cvx_short_course/blob/master/applications/worst_case_analysis.ipynb]

	Optimal advertising [http://nbviewer.ipython.org/github/cvxgrp/cvx_short_course/blob/master/applications/optimal_advertising.ipynb]

	Huber regression [http://nbviewer.ipython.org/github/cvxgrp/cvx_short_course/blob/master/applications/huber_regression.ipynb]

	Quantile regression [http://nbviewer.ipython.org/github/cvxgrp/cvx_short_course/blob/master/applications/quantile_regression.ipynb]

	Model fitting [http://nbviewer.ipython.org/github/cvxgrp/cvx_short_course/blob/master/applications/model_fitting.ipynb]






Advanced Examples


	Allocating interdiction effort to catch a smuggler [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/interdiction.ipynb]

	Antenna array design [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/ant_array_min_beamwidth.ipynb]

	Computing a sparse solution of a set of linear inequalities [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/sparse_solution.ipynb]

	Entropy maximization [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/max_entropy.ipynb]

	Fault detection [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/fault_detection.ipynb]

	Filter design [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/fir_chebychev_design.ipynb]

	Fitting censored data [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/censored_data.ipynb]

	L1 trend filtering [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/l1_trend_filter.ipynb]

	Nonnegative matrix factorization [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/nonneg_matrix_fact.ipynb]

	Optimal parade route [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/parade_route.ipynb]

	Predicting NBA game wins [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/nba_ranking.ipynb]

	Robust Kalman filtering for vehicle tracking [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/robust_kalman.ipynb]

	Sizing of clock meshes [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/clock_mesh.ipynb]

	Sparse covariance estimation for Gaussian variables [http://nbviewer.ipython.org/github/cvxgrp/cvxpy/blob/master/examples/notebooks/WWW/sparse_covariance_est.ipynb]
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FAQ



	Where can I get help with CVXPY?

	Where can I learn more about convex optimization?

	What do I do if I get a DCPError exception?

	How do I find DCP errors?

	What do I do if I get a SolverError exception?

	What solvers does CVXPY support?

	What are the differences between CVXPY’s solvers?

	What do I do if I get “RuntimeError: maximum recursion depth exceeded”?

	Can I use NumPy functions on CVXPY objects?

	Can I use SciPy sparse matrices with CVXPY?

	How do I constrain a CVXPY matrix expression to be positive semidefinite?

	How do I create variables with special properties, such as boolean or symmetric variables?

	How do I create a variable that has multiple special properties, such as boolean and symmetric?

	How do I create complex variables?

	How do I create variables with more than 2 dimensions?

	How does CVXPY work?

	How do I cite CVXPY?






Where can I get help with CVXPY?

You can post questions about how to use CVXPY on the CVXPY mailing list [https://groups.google.com/forum/#!forum/cvxpy].
If you’ve found a bug in CVXPY or have a feature request,
create an issue on the CVXPY Github issue tracker [https://github.com/cvxgrp/cvxpy/issues].




Where can I learn more about convex optimization?

The book Convex Optimization [http://web.stanford.edu/~boyd/cvxbook/] by Boyd and Vandenberghe is available for free online and has extensive background on convex optimization.
To learn more about disciplined convex programming,
visit the DCP tutorial website [http://dcp.stanford.edu/].




What do I do if I get a DCPError exception?

The problems you solve in CVXPY must follow the rules of disciplined convex programming (DCP).
DCP is like a type system for optimization problems.
For more about DCP, see the DCP tutorial section or the DCP tutorial website [http://dcp.stanford.edu/].




How do I find DCP errors?

You can test whether a problem, objective, constraint, or expression satisfies the DCP
rules by calling object.is_dcp().
If the function returns False,
there is a DCP error in that object.




What do I do if I get a SolverError exception?

Sometimes solvers encounter numerical issues and fail to solve a problem, in which case CVXPY raises a SolverError.
If this happens to you,
try using different solvers on your problem,
as discussed in the “Choosing a solver” section of Advanced Features.
If the solver CVXOPT fails, try using the solver option kktsolver=ROBUST_KKTSOLVER.




What solvers does CVXPY support?

See the “Solve method options” section in Advanced Features for a list of the solvers CVXPY supports.
If you would like to use a solver CVXPY does not support,
make a feature request on the CVXPY Github issue tracker [https://github.com/cvxgrp/cvxpy/issues].




What are the differences between CVXPY’s solvers?

The solvers support different classes of problems and occupy different points on the Pareto frontier of speed, accuracy, and open source vs. closed source.
See the “Solve method options” section in Advanced Features for details.




What do I do if I get “RuntimeError: maximum recursion depth exceeded”?

See this thread [https://groups.google.com/forum/#!topic/cvxpy/btQuh4FsQ-I] on the mailing list.




Can I use NumPy functions on CVXPY objects?

No, you can only use CVXPY functions on CVXPY objects.
If you use a NumPy function on a CVXPY object,
it will probably fail in a confusing way.




Can I use SciPy sparse matrices with CVXPY?

Yes, though you need to be careful.
SciPy sparse matrices do not support operator overloading to the extent needed by CVXPY.
(See this Github issue [https://github.com/scipy/scipy/issues/4819] for details.)
You can wrap a SciPy sparse matrix as a CVXPY constant, however, and then use it normally with CVXPY:

# Wrap the SciPy sparse matrix A as a CVXPY constant.
A = Constant(A)
# Use A normally in CVXPY expressions.
expr = A*x








How do I constrain a CVXPY matrix expression to be positive semidefinite?

See Advanced Features.




How do I create variables with special properties, such as boolean or symmetric variables?

See Advanced Features.




How do I create a variable that has multiple special properties, such as boolean and symmetric?

Create one variable with each desired property, and then set them all equal by adding equality constraints.
CVXPY 1.0 [https://github.com/cvxgrp/cvxpy/issues/199] will have a more elegant solution.




How do I create complex variables?

You must represent complex variables using real variables,
as described in this Github issue [https://github.com/cvxgrp/cvxpy/issues/191].
We hope to add complex variables soon.




How do I create variables with more than 2 dimensions?

You must mimic the extra dimensions using a dict,
as described in this Github issue [https://github.com/cvxgrp/cvxpy/issues/198].




How does CVXPY work?

The algorithms and data structures used by CVXPY are discussed in this paper [http://arxiv.org/abs/1506.00760].




How do I cite CVXPY?

If you use CVXPY for published work, we encourage you to cite the software.
Use the following BibTeX citation:

@misc{cvxpy,
  author       = {Steven Diamond and Eric Chu and Stephen Boyd},
  title        = {{CVXPY}: A {P}ython-Embedded Modeling Language for Convex Optimization, version 0.2},
  howpublished = {\url{http://cvxpy.org/}},
  month        = may,
  year         = 2014
}
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Citing CVXPY

If you use CVXPY for published work, we encourage you to cite the software.

Use the following BibTeX citation:

@misc{cvxpy,
  author       = {Steven Diamond and Eric Chu and Stephen Boyd},
  title        = {{CVXPY}: A {P}ython-Embedded Modeling Language for Convex Optimization, version 0.2},
  howpublished = {\url{http://cvxpy.org/}},
  month        = may,
  year         = 2014
}
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How to Help

We welcome all contributors to CVXPY. You don’t need to be an expert in convex optimization to help out!

The cvxpy [https://groups.google.com/forum/#!forum/cvxpy] mailing list is for users and developers of CVXPY. Join this mailing list if you’re interested in contributing to CVXPY or would like to track CVXPY’s progress.

We use GitHub to track our source code and for tracking and discussing issues [https://github.com/cvxgrp/cvxpy/issues]. The open issues are a rough list of what needs to be done in developing CVXPY.
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Developer Notes



autodoc


When using autodoc with latex in docstrings, make sure to use raw strings, such as


r""" This is a docstring.

With more details
"""






Otherwise, you need to use double backslashes for latex commands.
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geo_mean



		
class cvxpy.geo_mean(x, p=None, max_denom=1024)[source]


		The (weighted) geometric mean of vector x, with optional powers given by p:



\[\left(x_1^{p_1} \cdots x_n^{p_n} \right)^{\frac{1}{\mathbf{1}^Tp}}\]

The powers p can be a list, tuple, or numpy.array of nonnegative
int, float, or Fraction objects with nonzero sum.


If not specified, p defaults to a vector of all ones, giving the
unweighted geometric mean



\[x_1^{1/n} \cdots x_n^{1/n}.\]

The geometric mean includes an implicit constraint that \(x_i \geq 0\)
whenever \(p_i > 0\). If \(p_i = 0\), \(x_i\) will be unconstrained.


The only exception to this rule occurs when
p has exactly one nonzero element, say, p_i, in which case
geo_mean(x, p) is equivalent to x_i (without the nonnegativity constraint).
A specific case of this is when \(x \in \mathbf{R}^1\).



Note


Generally, p cannot be represented exactly, so a rational,
i.e., fractional, approximation must be made.


Internally, geo_mean immediately computes an approximate normalized
weight vector \(w \approx p/\mathbf{1}^Tp\)
and the geo_mean atom is represented as



\[x_1^{w_1} \cdots x_n^{w_n},\]

where the elements of w are Fraction objects that sum to exactly 1.


The maximum denominator used in forming the rational approximation
is given by max_denom, which defaults to 1024, but can be adjusted
to modify the accuracy of the approximations.


The approximating w and the approximation error can be
found through the attributes geo_mean.w and geo_mean.approx_error.








		Parameters:		x : cvxpy.Variable



A column or row vector whose elements we will take the geometric mean of.






p : Sequence (list, tuple, numpy.array, ...) of int, float, or Fraction objects



A vector of weights for the weighted geometric mean


When p is a sequence of int and/or Fraction objects, w can often be an exact representation
of the weights. An exact representation is sometimes possible when p has float elements with only a few
decimal places.






max_denom : int



The maximum denominator to use in approximating p/sum(p) with geo_mean.w. If w is not an exact
representation, increasing max_denom may offer a more accurate representation, at the cost of requiring
more convex inequalities to represent the geometric mean.














Examples


The weights w can be seen from the string representation of the geo_mean object, or through
the w attribute.


>>> from cvxpy import Variable, geo_mean, Problem, Maximize
>>> x = Variable(3, name='x')
>>> print(geo_mean(x))
geo_mean(x, (1/3, 1/3, 1/3))
>>> g = geo_mean(x, [1, 2, 1])
>>> g.w
(Fraction(1, 4), Fraction(1, 2), Fraction(1, 4))






Floating point numbers with few decimal places can sometimes be represented exactly. The approximation
error between w and p/sum(p) is given by the approx_error attribute.


>>> import numpy as np
>>> x = Variable(4, name='x')
>>> p = np.array([.12, .34, .56, .78])
>>> g = geo_mean(x, p)
>>> g.w
(Fraction(1, 15), Fraction(17, 90), Fraction(14, 45), Fraction(13, 30))
>>> g.approx_error
0.0






In general, the approximation is not exact.


>>> p = [.123, .456, .789, .001]
>>> g = geo_mean(x, p)
>>> g.w
(Fraction(23, 256), Fraction(341, 1024), Fraction(295, 512), Fraction(1, 1024))
>>> 1e-4 <= g.approx_error <= 1e-3
True






The weight vector p can contain combinations of int, float, and Fraction objects.


>>> from fractions import Fraction
>>> x = Variable(4, name='x')
>>> g = geo_mean(x, [.1, Fraction(1,3), 0, 2])
>>> print(g)
geo_mean(x, (3/73, 10/73, 0, 60/73))
>>> g.approx_error <= 1e-10
True






Sequences of Fraction and int powers can often be represented exactly.


>>> p = [Fraction(1,17), Fraction(4,9), Fraction(1,3), Fraction(25,153)]
>>> x = Variable(4, name='x')
>>> print(geo_mean(x, p))
geo_mean(x, (1/17, 4/9, 1/3, 25/153))






Terms with a zero power will not have an implicit nonnegativity constraint.


>>> p = [1, 0, 1]
>>> x = Variable(3, name='x')
>>> obj = Maximize(geo_mean(x,p))
>>> constr = [sum(x) <= 1, -1 <= x, x <= 1]
>>> val = Problem(obj, constr).solve()
>>> x = np.array(x.value).flatten()
>>> print(x)
[ 1. -1.  1.]






Attributes









		w
		tuple of Fractions
		A rational approximation of p/sum(p).



		approx_error
		float
		The error in approximating p/sum(p) with w, given by \(\|p/\mathbf{1}^T p - w \|_\infty\)
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class cvxpy.power(x, p, max_denom=1024)[source]


		Elementwise power function \(f(x) = x^p\).


If expr is a CVXPY expression, then expr**p
is equivalent to power(expr, p).


Specifically, the atom is given by the cases



\[\begin{split}\begin{array}{ccl}
p = 0 & f(x) = 1 & \text{constant, positive} \\
p = 1 & f(x) = x & \text{affine, increasing, same sign as $x$} \\
p = 2,4,8,\ldots &f(x) = |x|^p  & \text{convex, signed monotonicity, positive} \\
p < 0 & f(x) = \begin{cases} x^p & x > 0 \\ +\infty & x \leq 0 \end{cases} & \text{convex, decreasing, positive} \\
0 < p < 1 & f(x) = \begin{cases} x^p & x \geq 0 \\ -\infty & x < 0 \end{cases} & \text{concave, increasing, positive} \\
p > 1,\ p \neq 2,4,8,\ldots & f(x) = \begin{cases} x^p & x \geq 0 \\ +\infty & x < 0 \end{cases} & \text{convex, increasing, positive}.
\end{array}\end{split}\]


Note


Generally, p cannot be represented exactly, so a rational,
i.e., fractional, approximation must be made.


Internally, power computes a rational approximation
to p with a denominator up to max_denom. The resulting
approximation can be found through the attribute power.p.
The approximation error is given by the attribute power.approx_error.
Increasing max_denom can give better approximations.


When p is an int or Fraction object, the approximation
is usually exact.





Note


The final domain, sign, monotonicity, and curvature of the power atom
are determined by the rational approximation to p, not the input parameter p.


For example,


>>> from cvxpy import Variable, power
>>> x = Variable()
>>> g = power(x, 1.001)
>>> g.p
Fraction(1001, 1000)
>>> g
Expression(CONVEX, POSITIVE, (1, 1))






results in a convex atom with implicit constraint \(x \geq 0\), while


>>> g = power(x, 1.0001)
>>> g.p
1
>>> g
Expression(AFFINE, UNKNOWN, (1, 1))






results in an affine atom with no constraint on x.





		When \(p > 1\) and p is not a power of two, the monotonically increasing version
of the function with full domain,



\[\begin{split}f(x) = \begin{cases} x^p & x \geq 0 \\ 0 & x < 0 \end{cases}\end{split}\]

can be formed with the composition power(pos(x), p).





		The symmetric version with full domain,



\[f(x) = |x|^p\]

can be formed with the composition power(abs(x), p).












		Parameters:		x : cvx.Variable


p : int, float, or Fraction



Scalar power.






max_denom : int



The maximum denominator considered in forming a rational approximation of p.
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class cvxpy.pnorm(x, p=2, max_denom=1024)[source]


		The vector p-norm.


If given a matrix variable, pnorm will treat it as a vector, and compute the p-norm
of the concatenated columns.


For \(p \geq 1\), the p-norm is given by



\[\|x\|_p = \left(\sum_i |x_i|^p \right)^{1/p},\]

with domain \(x \in \mathbf{R}^n\).


For \(p < 1,\ p \neq 0\), the p-norm is given by



\[\|x\|_p = \left(\sum_i x_i^p \right)^{1/p},\]

with domain \(x \in \mathbf{R}^n_+\).



		Note that the “p-norm” is actually a norm only when
\(p \geq 1\) or \(p = +\infty\). For these cases,
it is convex.


		The expression is not defined when \(p = 0\).


		Otherwise, when \(p < 1\), the expression is
concave, but it is not a true norm.






Note


Generally, p cannot be represented exactly, so a rational,
i.e., fractional, approximation must be made.


Internally, pnorm computes a rational approximation
to the reciprocal \(1/p\) with a denominator up to max_denom.
The resulting
approximation can be found through the attribute pnorm.p.
The approximation error is given by the attribute pnorm.approx_error.
Increasing max_denom can give better approximations.


When p is an int or Fraction object, the approximation
is usually exact.








		Parameters:		x : cvxpy.Variable



The value to take the norm of.






p : int, float, Fraction, or string



If p is an int, float, or Fraction then we must have \(p \geq 1\).


The only other valid inputs are numpy.inf, float('inf'), float('Inf'), or
the strings "inf" or "inf", all of which are equivalent and give the infinity norm.






max_denom : int



The maximum denominator considered in forming a rational approximation for p.










		Returns:		Expression :



An Expression representing the norm.















		
static graph_implementation(arg_objs, size, data=None)[source]


		Reduces the atom to an affine expression and list of constraints.






		Parameters:		arg_objs : list



LinExpr for each argument.






size : tuple



The size of the resulting expression.






data : :



Additional data required by the atom.










		Returns:		tuple :



(LinOp for objective, list of constraints)














Notes


Implementation notes.



		For general \(p \geq 1\), the inequality \(\|x\|_p \leq t\)
is equivalent to the following convex inequalities:



\[\begin{split}|x_i| &\leq r_i^{1/p} t^{1 - 1/p}\\
\sum_i r_i &= t.\end{split}\]

These inequalities happen to also be correct for \(p = +\infty\),
if we interpret \(1/\infty\) as \(0\).





		For general \(0 < p < 1\), the inequality \(\|x\|_p \geq t\)
is equivalent to the following convex inequalities:



\[\begin{split}r_i &\leq x_i^{p} t^{1 - p}\\
\sum_i r_i &= t.\end{split}\]




		For general \(p < 0\), the inequality \(\|x\|_p \geq t\)
is equivalent to the following convex inequalities:



\[\begin{split}t &\leq x_i^{-p/(1-p)} r_i^{1/(1 - p)}\\
\sum_i r_i &= t.\end{split}\]







Although the inequalities above are correct, for a few special cases, we can represent the p-norm
more efficiently and with fewer variables and inequalities.



		For \(p = 1\), we use the representation




\[\begin{split}x_i &\leq r_i\\
-x_i &\leq r_i\\
\sum_i r_i &= t\end{split}\]








		For \(p = \infty\), we use the representation




\[\begin{split}x_i &\leq t\\
-x_i &\leq t\end{split}\]





Note that we don’t need the \(r\) variable or the sum inequality.





		For \(p = 2\), we use the natural second-order cone representation




\[\|x\|_2 \leq t\]





Note that we could have used the set of inequalities given above if we wanted an alternate decomposition
of a large second-order cone into into several smaller inequalities.
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  All modules for which code is available
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  Source code for cvxpy.atoms.elementwise.power

"""
Copyright 2013 Steven Diamond

This file is part of CVXPY.

CVXPY is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

CVXPY is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with CVXPY.  If not, see <http://www.gnu.org/licenses/>.
"""

import cvxpy.utilities as u
import cvxpy.lin_ops.lin_utils as lu
from cvxpy.atoms.elementwise.elementwise import Elementwise
import numpy as np
from cvxpy.utilities.power_tools import (is_power2, gm_constrs, pow_mid,
                                         pow_high, pow_neg)


[docs]class power(Elementwise):
    r""" Elementwise power function :math:`f(x) = x^p`.

    If ``expr`` is a CVXPY expression, then ``expr**p``
    is equivalent to ``power(expr, p)``.

    Specifically, the atom is given by the cases

    .. math::

        \begin{array}{ccl}
        p = 0 & f(x) = 1 & \text{constant, positive} \\
        p = 1 & f(x) = x & \text{affine, increasing, same sign as $x$} \\
        p = 2,4,8,\ldots &f(x) = |x|^p  & \text{convex, signed monotonicity, positive} \\
        p < 0 & f(x) = \begin{cases} x^p & x > 0 \\ +\infty & x \leq 0 \end{cases} & \text{convex, decreasing, positive} \\
        0 < p < 1 & f(x) = \begin{cases} x^p & x \geq 0 \\ -\infty & x < 0 \end{cases} & \text{concave, increasing, positive} \\
        p > 1,\ p \neq 2,4,8,\ldots & f(x) = \begin{cases} x^p & x \geq 0 \\ +\infty & x < 0 \end{cases} & \text{convex, increasing, positive}.
        \end{array}

    .. note::

        Generally, ``p`` cannot be represented exactly, so a rational,
        i.e., fractional, **approximation** must be made.

        Internally, ``power`` computes a rational approximation
        to ``p`` with a denominator up to ``max_denom``. The resulting
        approximation can be found through the attribute ``power.p``.
        The approximation error is given by the attribute ``power.approx_error``.
        Increasing ``max_denom`` can give better approximations.

        When ``p`` is an ``int`` or ``Fraction`` object, the approximation
        is usually **exact**.

    .. note::

        The final domain, sign, monotonicity, and curvature of the ``power`` atom
        are determined by the rational approximation to ``p``, **not** the input parameter ``p``.

        For example,

        >>> from cvxpy import Variable, power
        >>> x = Variable()
        >>> g = power(x, 1.001)
        >>> g.p
        Fraction(1001, 1000)
        >>> g
        Expression(CONVEX, POSITIVE, (1, 1))

        results in a convex atom with implicit constraint :math:`x \geq 0`, while

        >>> g = power(x, 1.0001)
        >>> g.p
        1
        >>> g
        Expression(AFFINE, UNKNOWN, (1, 1))

        results in an affine atom with no constraint on ``x``.


    - When :math:`p > 1` and ``p`` is not a power of two, the monotonically increasing version
      of the function with full domain,

      .. math::

          f(x) = \begin{cases} x^p & x \geq 0 \\ 0 & x < 0 \end{cases}

      can be formed with the composition ``power(pos(x), p)``.

    - The symmetric version with full domain,

      .. math::

          f(x) = |x|^p

      can be formed with the composition ``power(abs(x), p)``.


    Parameters
    ----------

    x : cvx.Variable

    p : int, float, or Fraction
        Scalar power.

    max_denom : int
        The maximum denominator considered in forming a rational approximation of ``p``.



    """
    def __init__(self, x, p, max_denom=1024):
        p_old = p

        # how we convert p to a rational depends on the branch of the function
        if p > 1:
            p, w = pow_high(p, max_denom)
        elif 0 < p < 1:
            p, w = pow_mid(p, max_denom)
        elif p < 0:
            p, w = pow_neg(p, max_denom)

        # note: if, after making the rational approximation, p ends up being 0 or 1,
        # we default to using the 0 or 1 behavior of the atom, which affects the curvature, domain, etc...
        # maybe unexpected behavior to the user if they put in 1.00001?

        if p == 1:
            # in case p is a fraction equivalent to 1
            p = 1
            w = None
        if p == 0:
            p = 0
            w = None

        self.p, self.w = p, w

        self.approx_error = float(abs(self.p - p_old))

        super(power, self).__init__(x)

    @Elementwise.numpy_numeric
    def numeric(self, values):
        if self.p == 0:
            return np.ones(self.size)
        else:
            return np.power(values[0], self.p)

    def sign_from_args(self):
        if self.p == 1:
            # same sign as input
            return self.args[0]._dcp_attr.sign
        else:
            return u.Sign.POSITIVE

    def func_curvature(self):
        if self.p == 0:
            return u.Curvature.CONSTANT
        elif self.p == 1:
            return u.Curvature.AFFINE
        elif self.p < 0 or self.p > 1:
            return u.Curvature.CONVEX
        elif 0 < self.p < 1:
            return u.Curvature.CONCAVE

    def monotonicity(self):
        if self.p == 0:
            return [u.monotonicity.INCREASING]
        if self.p == 1:
            return [u.monotonicity.INCREASING]
        if self.p < 0:
            return [u.monotonicity.DECREASING]
        if 0 < self.p < 1:
            return [u.monotonicity.INCREASING]
        if self.p > 1:
            if is_power2(self.p):
                return [u.monotonicity.SIGNED]
            else:
                return [u.monotonicity.INCREASING]

    def validate_arguments(self):
        pass

    def get_data(self):
        return self.p, self.w

    @staticmethod
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        p, w = data

        if p == 1:
            return x, []
        else:
            one = lu.create_const(np.mat(np.ones(size)), size)
            if p == 0:
                return one, []
            else:
                t = lu.create_var(size)

                if 0 < p < 1:
                    return t, gm_constrs(t, [x, one], w)
                elif p > 1:
                    return t, gm_constrs(x, [t, one], w)
                elif p < 0:
                    return t, gm_constrs(one, [x, t], w)
                else:
                    raise NotImplementedError('this power is not yet supported.')

    def name(self):
        return "%s(%s, %s)" % (self.__class__.__name__,
                                 self.args[0].name(),
                                 self.p)
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  Source code for cvxpy.atoms.geo_mean

"""
Copyright 2013 Steven Diamond

This file is part of CVXPY.

CVXPY is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

CVXPY is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with CVXPY.  If not, see <http://www.gnu.org/licenses/>.
"""


import cvxpy.utilities as u
from cvxpy.atoms.atom import Atom
from cvxpy.atoms.affine.index import index
import numpy as np
import numbers


from ..utilities.power_tools import fracify, decompose, approx_error, lower_bound, over_bound, prettydict, gm, gm_constrs
import cvxpy.lin_ops.lin_utils as lu


[docs]class geo_mean(Atom):
    """ The (weighted) geometric mean of vector ``x``, with optional powers given by ``p``:

    .. math::

        \\left(x_1^{p_1} \cdots x_n^{p_n} \\right)^{\\frac{1}{\mathbf{1}^Tp}}

    The powers ``p`` can be a ``list``, ``tuple``, or ``numpy.array`` of nonnegative
    ``int``, ``float``, or ``Fraction`` objects with nonzero sum.

    If not specified, ``p`` defaults to a vector of all ones, giving the
    **unweighted** geometric mean

    .. math::

        x_1^{1/n} \cdots x_n^{1/n}.

    The geometric mean includes an implicit constraint that :math:`x_i \geq 0`
    whenever :math:`p_i > 0`. If :math:`p_i = 0`, :math:`x_i` will be unconstrained.

    The only exception to this rule occurs when
    ``p`` has exactly one nonzero element, say, ``p_i``, in which case
    ``geo_mean(x, p)`` is equivalent to ``x_i`` (without the nonnegativity constraint).
    A specific case of this is when :math:`x \in \mathbf{R}^1`.


    .. note::

        Generally, ``p`` cannot be represented exactly, so a rational,
        i.e., fractional, **approximation** must be made.

        Internally, ``geo_mean`` immediately computes an approximate normalized
        weight vector :math:`w \\approx p/\mathbf{1}^Tp`
        and the ``geo_mean`` atom is represented as

        .. math::

            x_1^{w_1} \cdots x_n^{w_n},

        where the elements of ``w`` are ``Fraction`` objects that sum to exactly 1.

        The maximum denominator used in forming the rational approximation
        is given by ``max_denom``, which defaults to 1024, but can be adjusted
        to modify the accuracy of the approximations.

        The approximating ``w`` and the approximation error can be
        found through the attributes ``geo_mean.w`` and ``geo_mean.approx_error``.


    Examples
    --------

    The weights ``w`` can be seen from the string representation of the ``geo_mean`` object, or through
    the ``w`` attribute.

    >>> from cvxpy import Variable, geo_mean, Problem, Maximize
    >>> x = Variable(3, name='x')
    >>> print(geo_mean(x))
    geo_mean(x, (1/3, 1/3, 1/3))
    >>> g = geo_mean(x, [1, 2, 1])
    >>> g.w
    (Fraction(1, 4), Fraction(1, 2), Fraction(1, 4))

    Floating point numbers with few decimal places can sometimes be represented exactly. The approximation
    error between ``w`` and ``p/sum(p)`` is given by the ``approx_error`` attribute.

    >>> import numpy as np
    >>> x = Variable(4, name='x')
    >>> p = np.array([.12, .34, .56, .78])
    >>> g = geo_mean(x, p)
    >>> g.w
    (Fraction(1, 15), Fraction(17, 90), Fraction(14, 45), Fraction(13, 30))
    >>> g.approx_error
    0.0

    In general, the approximation is not exact.

    >>> p = [.123, .456, .789, .001]
    >>> g = geo_mean(x, p)
    >>> g.w
    (Fraction(23, 256), Fraction(341, 1024), Fraction(295, 512), Fraction(1, 1024))
    >>> 1e-4 <= g.approx_error <= 1e-3
    True

    The weight vector ``p`` can contain combinations of ``int``, ``float``, and ``Fraction`` objects.

    >>> from fractions import Fraction
    >>> x = Variable(4, name='x')
    >>> g = geo_mean(x, [.1, Fraction(1,3), 0, 2])
    >>> print(g)
    geo_mean(x, (3/73, 10/73, 0, 60/73))
    >>> g.approx_error <= 1e-10
    True

    Sequences of ``Fraction`` and ``int`` powers can often be represented **exactly**.

    >>> p = [Fraction(1,17), Fraction(4,9), Fraction(1,3), Fraction(25,153)]
    >>> x = Variable(4, name='x')
    >>> print(geo_mean(x, p))
    geo_mean(x, (1/17, 4/9, 1/3, 25/153))

    Terms with a zero power will not have an implicit nonnegativity constraint.

    >>> p = [1, 0, 1]
    >>> x = Variable(3, name='x')
    >>> obj = Maximize(geo_mean(x,p))
    >>> constr = [sum(x) <= 1, -1 <= x, x <= 1]
    >>> val = Problem(obj, constr).solve()
    >>> x = np.array(x.value).flatten()
    >>> print(x)
    [ 1. -1.  1.]


    Parameters
    ----------
    x : cvxpy.Variable
        A column or row vector whose elements we will take the geometric mean of.

    p : Sequence (list, tuple, numpy.array, ...) of ``int``, ``float``, or ``Fraction`` objects
        A vector of weights for the weighted geometric mean

        When ``p`` is a sequence of ``int`` and/or ``Fraction`` objects, ``w`` can often be an **exact** representation
        of the weights. An exact representation is sometimes possible when ``p`` has ``float`` elements with only a few
        decimal places.

    max_denom : int
        The maximum denominator to use in approximating ``p/sum(p)`` with ``geo_mean.w``. If ``w`` is not an exact
        representation, increasing ``max_denom`` **may** offer a more accurate representation, at the cost of requiring
        more convex inequalities to represent the geometric mean.


    Attributes
    ----------
    w : tuple of ``Fractions``
        A rational approximation of ``p/sum(p)``.
    approx_error : float
        The error in approximating ``p/sum(p)`` with ``w``, given by :math:`\|p/\mathbf{1}^T p - w \|_\infty`
    """

    def __init__(self, x, p=None, max_denom=1024):
        """ Implementation details of geo_mean.

        Attributes
        ----------

        w_dyad : tuple of ``Fractions`` whose denominators are all a power of two
            The dyadic completion of ``w``, which is used internally to form the inequalities representing the
            geometric mean.

        tree : ``dict``
            keyed by dyadic tuples, whose values are Sequences of children.
            The children are also dyadic tuples.
            This represents the graph that needs to be formed to represent the weighted geometric mean.

        cone_lb : int
            A known lower bound (which is not always tight) on the number of cones needed to represent this
            geometric mean.

        cone_num_over : int
            The number of cones beyond the lower bound that this geometric mean used.
            If 0, we know that it used the minimum possible number of cones.
            Since cone_lb is not always tight, it may be using the minimum number of cones even if
            cone_num_over is not 0.

        cone_num : int
            The number of second order cones used to form this geometric mean

        """
        super(geo_mean, self).__init__(x)

        x = self.args[0]
        if x.size[0] == 1:
            n = x.size[1]
        elif x.size[1] == 1:
            n = x.size[0]
        else:
            raise ValueError('x must be a row or column vector.')

        if p is None:
            p = [1]*n

        if len(p) != n:
            raise ValueError('x and p must have the same number of elements.')

        if any(v < 0 for v in p) or sum(p) <= 0:
            raise ValueError('powers must be nonnegative and not all zero.')

        self.w, self.w_dyad = fracify(p, max_denom)
        self.approx_error = approx_error(p, self.w)

        self.tree = decompose(self.w_dyad)

        # known lower bound on number of cones needed to represent w_dyad
        self.cone_lb = lower_bound(self.w_dyad)

        # number of cones used past known lower bound
        self.cone_num_over = over_bound(self.w_dyad, self.tree)

        # number of cones used
        self.cone_num = self.cone_lb + self.cone_num_over

    # Returns the (weighted) geometric mean of the elements of x.
    @Atom.numpy_numeric
    def numeric(self, values):
        values = np.array(values[0]).flatten()
        val = 1.0
        for x, p in zip(values, self.w):
            val *= x**p
        return val

    def name(self):
        return "%s(%s, (%s))" % (self.__class__.__name__,
                                 self.args[0].name(),
                                 ', '.join(str(v) for v in self.w))

    def pretty_tree(self):
        print(prettydict(self.tree))

    def shape_from_args(self):
        return u.Shape(1, 1)

    def sign_from_args(self):
        return u.Sign.POSITIVE

    def func_curvature(self):
        return u.Curvature.CONCAVE

    def monotonicity(self):
        return [u.monotonicity.INCREASING]

    def validate_arguments(self):
        # since correctly validating arguments with this function is tricky,
        # we do it in __init__ instead.
        pass

    def get_data(self):
        return self.w, self.w_dyad, self.tree

    @staticmethod
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        w, w_dyad, tree = data
        t = lu.create_var((1, 1))
        x_list = [index.get_index(arg_objs[0], [], i, 0) for i in range(len(w))]

        #todo: catch cases where we have (0, 0, 1)?
        #todo: what about curvature case (should be affine) in trivial case of (0, 0 , 1), should this behavior match with what we do in power?

        return t, gm_constrs(t, x_list, w)
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  Source code for cvxpy.atoms.pnorm

"""
Copyright 2013 Steven Diamond

This file is part of CVXPY.

CVXPY is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

CVXPY is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with CVXPY.  If not, see <http://www.gnu.org/licenses/>.
"""

from cvxpy.atoms.atom import Atom
import cvxpy.utilities as u
import cvxpy.lin_ops.lin_utils as lu
import numpy as np
from ..utilities.power_tools import pow_high, pow_mid, pow_neg, gm_constrs
from cvxpy.constraints.second_order import SOC
from fractions import Fraction


[docs]class pnorm(Atom):
    r"""The vector p-norm.

    If given a matrix variable, ``pnorm`` will treat it as a vector, and compute the p-norm
    of the concatenated columns.

    For :math:`p \geq 1`, the p-norm is given by

    .. math::

        \|x\|_p = \left(\sum_i |x_i|^p \right)^{1/p},

    with domain :math:`x \in \mathbf{R}^n`.

    For :math:`p < 1,\ p \neq 0`, the p-norm is given by

    .. math::

        \|x\|_p = \left(\sum_i x_i^p \right)^{1/p},

    with domain :math:`x \in \mathbf{R}^n_+`.

    - Note that the "p-norm" is actually a **norm** only when
      :math:`p \geq 1` or :math:`p = +\infty`. For these cases,
      it is convex.
    - The expression is not defined when :math:`p = 0`.
    - Otherwise, when :math:`p < 1`, the expression is
      concave, but it is not a true norm.

    .. note::

        Generally, ``p`` cannot be represented exactly, so a rational,
        i.e., fractional, **approximation** must be made.

        Internally, ``pnorm`` computes a rational approximation
        to the reciprocal :math:`1/p` with a denominator up to ``max_denom``.
        The resulting
        approximation can be found through the attribute ``pnorm.p``.
        The approximation error is given by the attribute ``pnorm.approx_error``.
        Increasing ``max_denom`` can give better approximations.

        When ``p`` is an ``int`` or ``Fraction`` object, the approximation
        is usually **exact**.


    Parameters
    ----------
    x : cvxpy.Variable
        The value to take the norm of.

    p : int, float, Fraction, or string
        If ``p`` is an ``int``, ``float``, or ``Fraction`` then we must have :math:`p \geq 1`.

        The only other valid inputs are ``numpy.inf``, ``float('inf')``, ``float('Inf')``, or
        the strings ``"inf"`` or ``"inf"``, all of which are equivalent and give the infinity norm.

    max_denom : int
        The maximum denominator considered in forming a rational approximation for ``p``.

    Returns
    -------
    Expression
        An Expression representing the norm.
    """
    def __init__(self, x, p=2, max_denom=1024):
        p_old = p
        if p in ('inf', 'Inf', np.inf):
            self.p = np.inf
        elif p < 0:
            self.p, _ = pow_neg(p, max_denom)
        elif 0 < p < 1:
            self.p, _ = pow_mid(p, max_denom)
        elif p > 1:
            self.p, _ = pow_high(p, max_denom)
        elif p == 1:
            self.p = 1
        else:
            raise ValueError('Invalid p: {}'.format(p))

        super(pnorm, self).__init__(x)

        if self.p == np.inf:
            self.approx_error = 0
        else:
            self.approx_error = float(abs(self.p - p_old))


    @Atom.numpy_numeric
    def numeric(self, values):
        """Returns the p-norm of x.
        """
        values = np.array(values[0]).flatten()

        if self.p < 1 and np.any(values < 0):
            return -np.inf

        if self.p < 0 and np.any(values == 0):
            return 0.0

        return np.linalg.norm(values, self.p)


    def shape_from_args(self):
        """Resolves to a scalar.
        """
        return u.Shape(1, 1)

    def sign_from_args(self):
        """Always positive.
        """
        return u.Sign.POSITIVE

    def func_curvature(self):
        """Default curvature is convex.
        """
        if self.p >= 1:
            return u.Curvature.CONVEX
        else:
            return u.Curvature.CONCAVE

    def monotonicity(self):
        """Increasing for positive arguments and decreasing for negative.
        """
        if self.p >= 1:
            return [u.monotonicity.SIGNED]
        else:
            return [u.monotonicity.INCREASING]


    def get_data(self):
        return self.p

    def name(self):
        return "%s(%s, %s)" % (self.__class__.__name__,
                               self.args[0].name(),
                               self.p)

    @staticmethod
[docs]    def graph_implementation(arg_objs, size, data=None):
        r"""Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)

        Notes
        -----

        Implementation notes.

        - For general :math:`p \geq 1`, the inequality :math:`\|x\|_p \leq t`
          is equivalent to the following convex inequalities:

          .. math::

              |x_i| &\leq r_i^{1/p} t^{1 - 1/p}\\
              \sum_i r_i &= t.

          These inequalities happen to also be correct for :math:`p = +\infty`,
          if we interpret :math:`1/\infty` as :math:`0`.

        - For general :math:`0 < p < 1`, the inequality :math:`\|x\|_p \geq t`
          is equivalent to the following convex inequalities:

          .. math::

              r_i &\leq x_i^{p} t^{1 - p}\\
              \sum_i r_i &= t.

        - For general :math:`p < 0`, the inequality :math:`\|x\|_p \geq t`
          is equivalent to the following convex inequalities:

          .. math::

              t &\leq x_i^{-p/(1-p)} r_i^{1/(1 - p)}\\
              \sum_i r_i &= t.




        Although the inequalities above are correct, for a few special cases, we can represent the p-norm
        more efficiently and with fewer variables and inequalities.

        - For :math:`p = 1`, we use the representation

            .. math::

                x_i &\leq r_i\\
                -x_i &\leq r_i\\
                \sum_i r_i &= t

        - For :math:`p = \infty`, we use the representation

            .. math::

                x_i &\leq t\\
                -x_i &\leq t

          Note that we don't need the :math:`r` variable or the sum inequality.

        - For :math:`p = 2`, we use the natural second-order cone representation

            .. math::

                \|x\|_2 \leq t

          Note that we could have used the set of inequalities given above if we wanted an alternate decomposition
          of a large second-order cone into into several smaller inequalities.

        """
        p = data
        x = arg_objs[0]
        t = lu.create_var((1, 1))
        constraints = []

        # first, take care of the special cases of p = 2, inf, and 1
        if p == 2:
            return t, [SOC(t, [x])]

        if p == np.inf:
            t_ = lu.promote(t, x.size)
            return t, [lu.create_leq(x, t_), lu.create_geq(lu.sum_expr([x, t_]))]

        # we need an absolute value constraint for the symmetric convex branches (p >= 1)
        # we alias |x| as x from this point forward to make the code pretty :)
        if p >= 1:
            absx = lu.create_var(x.size)
            constraints += [lu.create_leq(x, absx), lu.create_geq(lu.sum_expr([x, absx]))]
            x = absx

        if p == 1:
            return lu.sum_entries(x), constraints

        # now, we take care of the remaining convex and concave branches
        # to create the rational powers, we need a new variable, r, and
        # the constraint sum(r) == t
        r = lu.create_var(x.size)
        t_ = lu.promote(t, x.size)
        constraints += [lu.create_eq(lu.sum_entries(r), t)]

        # make p a fraction so that the input weight to gm_constrs
        # is a nice tuple of fractions.
        p = Fraction(p)
        if p < 0:
            constraints += gm_constrs(t_, [x, r],  (-p/(1-p), 1/(1-p)))
        if 0 < p < 1:
            constraints += gm_constrs(r,  [x, t_], (p, 1-p))
        if p > 1:
            constraints += gm_constrs(x,  [r, t_], (1/p, 1-1/p))

        return t, constraints

        # todo: no need to run gm_constr to form the tree each time. we only need to form the tree once
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